The inverse hyperbolic functions simplify to equivalent expressions involving logarithms.  The following simplified results assume that domain of z has been declared complex.


ASINH(z) is the inverse hyperbolic sine of z.  ASINH(z) simplifies to

      2          
LN((z  + 1) + z)


ACOSH(z) is the inverse hyperbolic cosine of z.  ACOSH(z) simplifies to

2·LN((z - 1) + (z + 1)) - LN(2)


ATANH(z) is the inverse hyperbolic tangent of z.  ATANH(z) simplifies to

 LN(z + 1)     LN(1 - z) 
——————————— - ———————————
     2             2     


ACOTH(z) is the inverse hyperbolic cotangent of z.  ACOTH(z) simplifies to

     z + 1   
 LN(———————) 
     z - 1   
—————————————
      2      


ASECH(z) is the inverse hyperbolic secant of z.  ASECH(z) simplifies to

        1 - z        z + 1           
2·LN((———————) + (———————)) - LN(2)
          z            z             


ACSCH(z) is the inverse hyperbolic cosecant of z.  ACSCH(z) simplifies to

          2            
         z  + 1        
    z·(————————) + 1  
            2          
           z           
LN(———————————————————)
            z          


Other Built-in Functions and ConstantsBuilt_in_Functions_and_Constants 

Created with the Personal Edition of HelpNDoc: Benefits of a Help Authoring Tool