Inverse Hyperbolic Functions
The inverse hyperbolic functions simplify to equivalent expressions involving logarithms. The following simplified results assume that domain of z has been declared complex.
ASINH(z) is the inverse hyperbolic sine of z. ASINH(z) simplifies to
2
LN(√(z + 1) + z)
ACOSH(z) is the inverse hyperbolic cosine of z. ACOSH(z) simplifies to
2·LN(√(z - 1) + √(z + 1)) - LN(2)
ATANH(z) is the inverse hyperbolic tangent of z. ATANH(z) simplifies to
LN(z + 1) LN(1 - z)
——————————— - ———————————
2 2
ACOTH(z) is the inverse hyperbolic cotangent of z. ACOTH(z) simplifies to
z + 1
LN(———————)
z - 1
—————————————
2
ASECH(z) is the inverse hyperbolic secant of z. ASECH(z) simplifies to
1 - z z + 1
2·LN(√(———————) + √(———————)) - LN(2)
z z
ACSCH(z) is the inverse hyperbolic cosecant of z. ACSCH(z) simplifies to
2
z + 1
z·√(————————) + 1
2
z
LN(———————————————————)
z
Other Built-in Functions and ConstantsBuilt_in_Functions_and_Constants
Created with the Personal Edition of HelpNDoc: Benefits of a Help Authoring Tool