Orthogonal Polynomials
The file OrthogonalPolynomials.mth defines functions for generating orthogonal polynomials. These polynomials are described in Chapter 22 of Abramowitz and Stegun [1965]. The function definitions in the file are automatically loaded when any of its functions are first used.
CHEBYCHEV_T(n, x) simplifies to the nth Chebychev polynomial of the first kind Tn(x) based on the recursion
T0(x) = 1
T1(x) = x
T(n+1)(x) = 2·x·Tn(x) - T(n-1)(x)
For example,
CHEBYCHEV_T(6, x)
simplifies to T6(x)
6 4 2
32·x - 48·x + 18·x - 1
CHEBYCHEV_T_LIST(n, x) simplifies to a vector of the first n Chebychev polynomials of the first kind. For example,
CHEBYCHEV_T_LIST(7, x)
simplifies to a vector of T0(x) through T6(x).
CHEBYCHEV_U(n, x) simplifies to the nth Chebychev polynomial of the second kind Un(x) based on the recursion
U0(x) = 1
U1(x) = 2·x
U(n+1)(x) = 2·x·Un(x) - U(n-1)(x)
For example,
CHEBYCHEV_U(6, x)
simplifies to U6(x)
6 4 2
64·x - 80·x + 24·x - 1
CHEBYCHEV_U_LIST(n, x) simplifies to a vector of the first n Chebychev polynomials of the second kind. For example,
CHEBYCHEV_U_LIST(7, x)
simplifies to a vector of U0(x) through U6(x).
LEGENDRE_P(n, x) simplifies to the nth Legendre polynomial Pn(x) based on the recursion
P0(x) = 1
P1(x) = x
(n+1)·P(n+1)(x) = (2·n+1)·x·Pn(x) - n·P(n-1)(x)
For example,
LEGENDRE_P(6, x)
simplifies to P6(x)
6 4 2
231·x - 315·x + 105·x - 5
——————————————————————————————
16
LEGENDRE_P_LIST(n, x) simplifies to a vector of the first n Legendre polynomials. For example,
LEGENDRE_P_LIST(7, x)
simplifies to a vector of P0(x) through P6(x).
ASSOCIATED_LEGENDRE_P(n, m, x) simplifies to the nth associated Legendre polynomial Pnm(x). For example,
ASSOCIATED_LEGENDRE_P(4, 2, x)
simplifies to P4(2)(x)
2 2
15·(1 - x )·(7·x - 1)
————————————————————————
2
HERMITE_H(n, x) simplifies to the nth Hermite polynomial Hn(x) based on the recursion
H0(x) = 1
H1(x) = 2·x
H(n+1)(x) = 2·x·Hn(x) - 2·n·H(n-1)(x)
For example,
HERMITE_H(6, x)
simplifies to H6(x)
6 4 2
64·x - 480·x + 720·x - 120
HERMITE_H_LIST(n, x) simplifies to a vector of the first n Hermite polynomials. For example,
HERMITE_H_LIST(7, x)
simplifies to a vector of H0(x) through H6(x).
HERMITE_HE(n, x) simplifies to the nth associated Hermite polynomial Hen(x) based on the recursion
He0(x) = 1
He1(x) = x
He(n+1)(x) = x·Hen(x) - n·He(n-1)(x)
For example,
HERMITE_HE(6, x)
simplifies to He6(x)
6 4 2
x - 15·x + 45·x - 15
HERMITE_HE_LIST(n, x) simplifies to a vector of the first n associated Hermite polynomials. For example,
HERMITE_HE_LIST(7, x)
simplifies to a vector of He0(x) through He6(x).
WEBER_D(n, x) simplifies to Weber's nth parabolic cylinder function Dn(x). For example,
WEBER_D(6, x)
simplifies to
2
- x /4 6 4 2
e ·(x - 15·x + 45·x - 15)
LAGUERRE_L(n, x) simplifies to the nth Laguerre polynomial Ln(x) based on the recursion
L0(x) = 1
L1(x) = -x + 1
(n+1)·L(n+1)(x) = (2·n+1-x)·Ln(x) - n·L(n-1)(x)
For example,
LAGUERRE_L(4, x)
simplifies to L4(x)
4 3
x 2·x 2
———— - —————— + 3·x - 4·x + 1
24 3
LAGUERRE_L_LIST(n, x) simplifies to a vector of the first n Laguerre polynomials. For example,
LAGUERRE_L_LIST(5, x)
simplifies to a vector of L0(x) through L4(x).
GENERALIZED_LAGUERRE(n, α, x) simplifies to the nth generalized Laguerre polynomial Ln(α)(x) based on the recursion
L0(α)(x) = 1
L1(α)(x) = -x + α + 1
(n+1)·L(n+1)(α)(x) = (2·n+α+1-x)·Ln(α)(x) - (n+α)·L(n-1)(α)(x)
For example,
GENERALIZED_LAGUERRE(4, 2, x)
simplifies to L4(2)(x)
4 2
x 3 15·x
———— - x + ——————— - 20·x + 15
24 2
GENERALIZED_LAGUERRE_LIST(n, α, x) simplifies to a vector of the first n generalized α Laguerre polynomials. For example,
GENERALIZED_LAGUERRE_LIST(5, 2, x)
simplifies to a vector of L0(2)(x) through L4(2)(x).
JACOBI_P(n, α, β, x) simplifies to the nth Jacobi polynomial Pn(α, β)(x). For example,
JACOBI_P(4, 2, 1, x)
simplifies to P4(2,1)(x)
4 3 2
5·(33·x + 12·x - 18·x - 4·x + 1)
—————————————————————————————————————
8
JACOBI_P_LIST(n, α, β, x) simplifies to a vector of the first n Jacobi (α, β) polynomials. For example,
JACOBI_P_LIST(5, 2, 1, x)
simplifies to a vector of P0(2,1)(x) through P4(2,1)(x).
GEGENBAUER_C(n, α, x) simplifies to the nth Gegenbauer ultraspherical polynomial Cnα(x). For example,
GEGENBAUER_C(4, 2, x)
simplifies to C4(2)(x)
4 2
80·x - 48·x + 3
GEGENBAUER_C_LIST(n, α, x) simplifies to a vector of the first n Gegenbauer ultraspherical α polynomials. For example,
GEGENBAUER_C_LIST(5, 2, x)
simplifies to a vector of C0(2)(x) through C4(2)(x).
Other Utility File LibraryG5BS2R
Created with the Personal Edition of HelpNDoc: Single source CHM, PDF, DOC and HTML Help creation