Utility File Functions
The following is an alphabetical list of the functions defined in the utility files in Math directory distributed with Derive (see the Utility File LibraryG5BS2R). These functions are automatically load on demand.
ADJOINTI._DEZ(A) adjoint of square matrix A
AI_SERIES3JDX.V4(z,m) m+1 terms of series approximation for Airy function Ai(z)
ALMOST_LINOA7SLO(r,b,p,q,x,y,x0,y0) implicit solution of r(x,y)y'+p(x)b(y)=q(x) if almost linear
ALMOST_LIN_GENOA7SLO(r,b,p,q,x,y,c) general solution of r(x,y)y'+p(x)b(y)=q(x) if almost linear
APPEND_COLUMNSI._DEZ(A,B) append columns of A and B
APPROX_EIGENVECTORI._DEZ(A,μ) approximate eigenvector of A for approximate eigenvalue μ
ARC_LENGTH2W1Y_YU(y,x,x1,x2) arc length of y(x) from x=x1 to x2
ARC_LENGTH2W1Y_YU(y,x,x1,x2,μ) integral of μ(x) along arc y(x) from x=x1 to x2
ARCSPlotting_Complex_valued_Expressions(w,z,r0,rm,m,θ0,θn,n) w-plane map of polar z-plane grid r=r0...rm, θ=θ0...θn
AREA2W1Y_YU(x,x1,x2,y,y1,y2) area of region x=x1 to x2 and y=y1(x) to y2(x)
AREA2W1Y_YU(x,x1,x2,y,y1,y2,μ) integral of μ(x,y) over region
AREA_CENTROID2W1Y_YU(x,x1,x2,y,y1,y2) area centroid of region
AREA_CENTROID2W1Y_YU(x,x1,x2,y,y1,y2,μ) centroid of density μ(x,y) over region
AREA_INERTIA2W1Y_YU(x,x1,x2,y,y1,y2) area inertia tensor of region
AREA_INERTIA2W1Y_YU(x,x1,x2,y,y1,y2,μ) inertia tensor of density μ(x,y)
AREA_OF_REVOLUTION2W1Y_YU(y,x,x1,x2) area of y(x) revolved about x-axis
AreaBetweenCurvesPlotting_Areas_and_Integrals(u,v,x,a,b) plots area between u(x) and v(x) from x = a to b (a < b)
AreaOverCurvesPlotting_Areas_and_Integrals(u,x,a,b) plots area over u(x) and under the x-axis from x = a to b (a < b)
AreaUnderCurvesPlotting_Areas_and_Integrals(u,x,a,b) plots area under u(x) and above the x-axis from x = a to b (a < b)
AREAY_OF_REVOLUTION2W1Y_YU(y,x,x1,x2) area of y(x) revolved about y-axis
ASSOCIATED_LEGENDRE_PHBCBN(n,m,x) nth associated Legendre polynomial Pn(m)(x)
AUTONOMOUSOB7SLO(r,v) dv/dy, given y"=r(y,v), reducing to sequence of two 1st order
AUTONOMOUS_CONSERVATIVEOB7SLO(q,x,y,x0,y0,v0) solves y"=q(y), y=y0 and y'=v0 at x=x0
BELL1338PND(n) nth Bell or exponential number
BERNOULLI1338PND(n) nth Bernoulli number
BERNOULLI_ODEOA7SLO(p,q,k,x,y,x0,y0) implicit solution of Bernoulli equation y'+p(x)y=q(x)y^k
BERNOULLI_ODE_GENOA7SLO(p,q,k,x,y,c) general solution of Bernoulli equation y'+p(x)y=q(x)y^k
BERNOULLI_POLY1338PND(n,x) nth Bernoulli polynomial evaluated at x
BESSEL_I3JDX.V4(n,z) modified Bessel function of 1st kind In(z)
BESSEL_I_ASYMP3JDX.V4(n,z) 2-term asymptotic approximation for In(z)
BESSEL_I_SERIES3JDX.V4(n,z,m) m+1 terms of series approximation for In(z)
BESSEL_J3JDX.V4(n,z) Bessel function of 1st kind Jn(z)
BESSEL_J_ASYMP3JDX.V4(n,z) 1-term asymptotic approximation for Jn(z)
BESSEL_J_LIST3JDX.V4(n,z) vector of Bessel functions of 1st kind J0(z) through Jn(z)
BESSEL_J_SERIES3JDX.V4(n,z,m) m+1 terms of series approximation for Jn(z)
BESSEL_K3JDX.V4(n,z) modified Bessel function of 2nd kind Kn(z)
BESSEL_K_ASYMP3JDX.V4(n,z) 2-term asymptotic approximation for Kn(z)
BESSEL_Y3JDX.V4(n,z) Bessel function of 2nd kind Yn(z), n fractional
BESSEL_Y_ASYMP3JDX.V4(n,z) 1-term asymptotic approximation for Yn(z)
BESSEL_Y_SERIES3JDX.V4(n,z,m) m+1 terms of series approximation for Yn(z), n integer
BI_SERIES3JDX.V4(z,m) m+1 terms of series approximation for Airy function Bi(z)
BINOMIAL_DENSITY0FMTUG(k,n,p) binomial probability density function
BINOMIAL_DISTRIBUTION0FMTUG(k,n,p) cumulative probability binomial distribution function
CATALAN1338PND(n) nth Catalan number
CENTER_OF_CURVATUREAUKXVG(y,x) center of curvature of y(x)
CENTERED1338PND(n,p) nth p-sided centered number
CENTERED_CUBE1338PND(n,d) nth d-dimensional centered cube number
CENTERED_HEX1338PND(n,d) nth d-dimensional centered hex number
CENTERED_PYRAMID1338PND(n,p) nth p-sided d-dimensional centered pyramid number
CHEBYCHEV_THBCBN(n,x) nth Chebychev polynomial of 1st kind Tn(x)
CHEBYCHEV_T_LISTHBCBN(n,x) vector of first n Chebychev polynomials of 1st kind
CHEBYCHEV_UHBCBN(n,x) nth Chebychev polynomial of 2nd kind Un(x)
CHEBYCHEV_U_LISTHBCBN(n,x) vector of first n Chebychev polynomials of 2st kind
CHI_SQUARE0FMTUG(u,v) Chi-square distribution P(u|v), u = χ²
CI7RN4D(z) cosine integral Ci(z), -π < phase z < π
CLAIRAUTOA7SLO(p,q,x,y,v,c) vector of general and implicit solutions of generalized Clairaut differential equation
CLAIRAUT_DIFOKAKSN(p,q,d,x,y,c) implicit solution of Clairaut difference equation
COFACTORI._DEZ(A,i,j) numerator of element i,j of inverse of square matrix A
CONE2WQ_YS1(ϕ,θ,z) 3D coordinate vector of cone at an angle of ϕ radians from z-axis
CONTINUED_FRACTION19ICN1P(x,n) vector of n+1 partial quotients of continued fraction of x
CONVERGENT19ICN1P(x,k) kth convergent of x based on continued fraction of x
CONVERGENTS19ICN1P(x,k) vector of first k+1 convergents of x based on continued fraction of x
COPROJECTION2WQ_YS1(A) convert matrix A from lines of constant t to constant s
COVARIANT_METRIC_TENSORI._DEZ(A) covariant metric tensor of Jacobian matrix A
CRT19ICN1P(a,m) solution of system of linear congruence equations x = ai mod mi
CURVATUREAUKXVG(y,x) curvature of y(x)
CYCLOTOMICY5C_1X(n,x) simplifies to the nth cyclotomic polynomial in x
CYLINDER2WQ_YS1(r,θ,z) 3D coordinate vector of cylinder of radius r from z-axis
CYLINDRICAL_VOLUME2W1Y_YU(r, r1,r2,θ,θ1,θ2,z,z1,z2) volume of region in cylindrical coordinates
CYLINDRICAL_VOLUME2W1Y_YU(r,r1,r2,θ,θ1,θ2,z,z1,z2,μ) integral of μ(r,θ,z) over region in cylindrical coordinates
DAWSONXYKLH9(x) Dawson’s integral F(x)
DEF_INT_PARTS144O15P(u,v,x,a,b) integral of u(x)·v(x) from x=a to b using integration by parts
DEF_INT_SUBST144O15P(y,x,u,a,b) integral of y(x) from x=a to b using substitution
DIF_DATAY5C_1X(A) 1st derivative of 2-column numeric data matrix A
DIF_NUMERICY5C_1X(y,x,x0,h,n) nth derivative of y wrt x at x0 using step size h
DIF2_DATAY5C_1X(A) 2nd derivative of 2-column numeric data matrix A
DIGAMMA_PSI0FMTUG(z) approximation for digamma function ψ(z)
DILOG1CKZXC(x) dilogarithm function of x
DIRECTION_FIELD1NBVQQO(r,x,x0,xm,m,y,y0,yn,n) vector that plots as direction field for y'=r(x,y)
DISTINCT_PARTS1338PND(n) number of decompositions of n into integer summands
DIVISOR_SIGMA19ICN1P(k,n) sum of kth powers of positive divisors of n
DIVISOR_TAU19ICN1P(n) number of divisors of n
DIVISORS19ICN1P(n) ordered vector of all positive divisors of n
DSOLVE1OA7SLO(p,q,x,y,x0,y0) specific solution of p(x,y)+q(x,y)y'=0 with initial conditions y=y0 at x=x0
DSOLVE1_GENOA7SLO(p,q,x,y,c) general solution of p(x,y)+q(x,y)y'=0 in terms of c
DSOLVE2OB7SLO(p,q,r,x,c1,c2) general solution of y"+p(x)y'+q(x)y=r(x) in terms of c1 and c2
DSOLVE2_BVOB7SLO(p,q,r,x,x0,y0,x2,y2) specific solution of y"+p(x)y'+q(x)y=r(x) with boundary conditions
DSOLVE2_IVOB7SLO(p,q,r,x,x0,y0,v0) specific solution of y"+p(x)y'+q(x)y=r(x) with initial conditions
EI7RN4D(x,m) m terms of series approximation for exponential integral Ei(x)
EI17RN4D(z,m) m terms of series approximation for E1(z), -π < phase z < π
EIF296HRX(Φ,m,n) n iteration approximation of elliptic integral of 1st kind F(Φ|m)
ELLIPTIC_E296HRX(Φ,m) approximation of elliptic integral of 2nd kind E(Φ|m)
ELLIPTIC_F296HRX(Φ,m) approximation of elliptic integral of 1st kind F(Φ|m)
ELLIPTIC_PI296HRX(Φ,m,n) approximation of elliptic integral of 3rd kind II(n;Φ|m)
EN7RN4D(n,z) nth exponential integral En(z), real part of z > 0
EN_ASYMP7RN4D(n,z,m) m+1 terms of asymptotic approximation for En(z)
EULER1338PND(n) nth Euler number
EULER_ODE1NBVQQO(r,x,y,x0,y0,h,n) vector of n+1 solution points of y'=r(x,y) using Euler's method
EULER_BETA0FMTUG(z,w) Euler's beta function B(z,w)
EULER_PHI19ICN1P(n) Euler's totient function ϕ(n)
EULER_POLY1338PND(n,x) nth Euler polynomial evaluated at x
EXACTOA7SLO(p,q,x,y,x0,y0) implicit specific solution of p(x,y)+q(x,y)y'=0, if it is exact
EXACT_EIGENVECTORI._DEZ(A,μ) eigenvector of matrix A corresponding to exact eigenvalue μ
EXACT_GENOA7SLO(p,q,x,y,c) implicit general solution of p(x,y)+q(x,y)y'=0, if it is exact
EXACT2OB7SLO(p,q,x,y,v,c) reduces order of p(x,y,v)y"+q(x,y,v)=0 with v=y', if it is exact
EXTENDED_GCD19ICN1P(a,b) vector [g, [x, y]] of integers such that g = gcd(a, b) = x·a+y·b
EXTRACT_2_COLUMNS1NBVQQO(A,j,k) matrix composed of jth and kth columns of matrix A
F_DISTRIBUTION0FMTUG(F,v1,v2) cumulative probability F-distribution P(F|v1,v2)
FAREY19ICN1P(n) vector of Farey fractions of order n
FIBONACCI19ICN1P(n) nth Fibonacci number
FIXED_POINT.S02QQ(g,x,x0,n) n iterations of vector x=g(x), starting at x=x0
FORCE0I._DEZ(A,i,j,p) force element i,j of A to 0 using pivot row p
FOURIER2W1Y_YU(y,t,t1,t2,n) nth harmonic Fourier series of y(t) from t=t1 to t2
FRESNEL_COSXYKLH9(z) approximates to Fresnel cosine integral C(z)
FRESNEL_COS_ASYMPXYKLH9(z) 5-term asymptotic approximation for cosine integral C(z)
FRESNEL_COS_JXYKLH9(z,m) approximation of C(z) based on sum of m+1 spherical Bessel functions
FRESNEL_COS_SERIESXYKLH9(z,m) m+1 terms of series approximation for cosine integral C(z)
FRESNEL_SINXYKLH9(z) approximates to Fresnel sine integral S(z)
FRESNEL_SIN_ASYMPXYKLH9(z) 5-term asymptotic approximation for sine integral S(z)
FRESNEL_SIN_JXYKLH9(z,m) approximation of S(z) based on sum of m+1 spherical Bessel functions
FRESNEL_SIN_SERIESXYKLH9(z,m) m+1 terms of series approximation for sine integral S(z)
FUN_LIN_CCFOA7SLO(r,p,q,k,x,y,x0,y0) implicit solution of y'=r(p·x+q·y+k), if p,q,k constant
FUN_LIN_CCF_GENOA7SLO(r,p,q,k,x,y,c) general solutions of y'=r(p·x+q·y+k), if p,q,k constant
GAUSS3XSHYO3(a,b,c,z) Gauss hypergeometric function F(a,b;c;z)
GAUSS_SERIES3XSHYO3(a,b,c,z,m) m+1 terms of series for Gauss hypergeometric function
GEGENBAUER_CHBCBN(n,a,x) nth Gegenbauer ultraspherical polynomial Cn(a)(x)
GEGENBAUER_C_LISTHBCBN(n,a,x) vector of first n Gegenbauer ultraspherical polynomials
GEN_HOMOA7SLO(r,x,y,x0,y0) implicit specific solution of y'=r(x,y), if r is generalized homogeneous
GEN_HOM_GENOA7SLO(r,x,y,c) implicit general solution of y'=r(x,y), if r is generalized homogeneous
GEN_LUCAS19ICN1P(n,p,q,L0,L1) nth term of the generalized Lucas sequence L(n)
GENERALIZED_LAGUERREHBCBN(n,a,x) nth generalized Laguerre polynomial Ln(a)(x)
GENERALIZED_LAGUERRE_LISTHBCBN(n,a,x) vector of first n generalized Laguerre a polynomials
GEOMETRIC1OKAKSN(k,p,q,x,x0,y0) solution of 1st order linear-geometric recurrence equation
GEOMETRY_MATRIXI._DEZ(θ,G) geometry matrix for coordinate vector θ having metric tensor G
GOODNESS_OF_FIT144O15P(u,x,A) standard deviation of u(x) from data in matrix A
GRID_LINESPlotting_Grid_Lines_and_Points(a,b,s,o) plots as three sets of grid lines in a 3D-plot window
GRID_POINTSPlotting_Grid_Lines_and_Points(a,b,s,o) plots as three sets of grid points in a 3D-plot window
HERMITE_HHBCBN(n,x) nth Hermite polynomial Hn(x)
HERMITE_H_LISTHBCBN(n,x) vector of first n Hermite polynomials
HERMITE_HEHBCBN(n,x) nth associated Hermite polynomial HEn(x)
HERMITE_HE_LISTHBCBN(n,x) vector of first n associated Hermite polynomials
HOMOGENEOUSOA7SLO(r,x,y,x0,y0) specific solution of y'=r(x,y), if r is homogeneous
HOMOGENEOUS_GENOA7SLO(r,x,y,c) general solution of y'=r(x,y), if r is homogeneous
HORIZONTALSPlotting_Complex_valued_Expressions(w,z,z00,zmn,m,n) 2D plots as w-plane map of z-plane grid from z00 to zmn
HURWITZ_ZETA1CKZXC(s,a,m) m+1 terms of series approximation for Hurwitz generalized zeta function
HYPERGEOMETRIC_DENSITY0FMTUG(k,n,m,j) hypergeometric probability density function
HYPERGEOMETRIC_DISTRIBUTION0FMTUG(k,n,m,j) cumulative hypergeometric probability distribution function
HYPERGEOMETRIC_SERIES3XSHYO3(plist,qlist,z,m) m+1 terms of series for generalized hypergeometric function
IMP_CENTER_OF_ CURVATUREAUKXVG(u,x,y) center of curvature of implicit function u(x,y)=0
IMP_CURVATUREAUKXVG(u,x,y) curvature of implicit function u(x,y)=0
IMP_DIFAUKXVG(u,x,y,n) nth derivative of implicit function u(x,y)=0
IMP_OSCULATING_CIRCLEAUKXVG(u,x,y,x0,y0,θ) circle osculating implicit function u(x,y)=0 at (x0,y0) in terms of θ
IMP_PERPENDICULARAUKXVG(u,x,y,x0,y0) line perpendicular to implicit function u(x,y)=0 at (x0,y0)
IMP_TANGENTAUKXVG(u,x,y,x0,y0) line tangent to implicit function u(x,y)=0 at (x0,y0)
INCOMPLETE_BETA0FMTUG(x,z,w) incomplete beta function Bx(z,w)
INCOMPLETE_GAMMA0FMTUG(z,w) incomplete gamma function P(z,w), real part z > 0
INCOMPLETE_GAMMA_SERIES0FMTUG(z,w,m) m+1 terms of series approximation for P(z,w)
INT_DATAY5C_1X(A) antiderivative of numerical data matrix A
INT_PARTS144O15P(u,v,x) antiderivative of u(x)·v(x) using integration by parts
INT_SUBST144O15P(y,x,u) antiderivative of y(x) by substituting x for u(x)
INTEGRATING_FACTOROA7SLO(p,q,x,y,x0,y0) specific solution of p(x,y)+q(x,y)y'=0, if integrating factor exists
INTEGRATING_FACTOR_GENOA7SLO(p,q,x,y,c) general solution of p(x,y)+q(x,y)y'=0, if integrating factor exists
INVERSE144O15P(u,x) inverse of u(x) with respect to x
ISOMETRIC2WQ_YS1(v) 2D isometric projection of 3D coordinate vector v
ISOMETRICS2WQ_YS1(v,s,s0,sm,m,t,t0,tn,n) vector that 2D plots as isometric projection of 3D coordinate vector v
JACOBI19ICN1P(a,b) Jacobi symbol (a/b)
JACOBI_AM296HRX(u,m,n) Jacobi elliptic amplitude function
JACOBI_PHBCBN(n,a,b,x) nth Jacobi polynomial Pn(a,b)(x)
JACOBI_P_LISTHBCBN(n,a,b,x) vector of 1st n Jacobi (a,b) polynomials
JACOBIANI._DEZ(u,v) Jacobian matrix of the coordinate transformation x=u(v1,v2, …, vm)
KI296HRX(m,n) complete elliptic integral of the 1st kind
KRONECKERI._DEZ(i,j) Kronecker delta function
KUMMER3XSHYO3(a,b,z) Kummer's confluent hypergeometric function M(a,b,z)
KUMMER_SERIES3XSHYO3(a,b,z,m) m+1 terms of series approximation for M(a,b,z)
LAGUERRE_LHBCBN(n,x) nth Laguerre polynomial Ln(x)
LAGUERRE_L_LISTHBCBN(n,x) vector of first n Laguerre polynomials
LAPLACE2W1Y_YU(y,t,s) Laplace transform of y(t) for transform domain variable
LEFT_RIEMANN144O15P(u,x,a,b,n) left Riemann sum of n rectangles of integral of u(x) from x=a to b
LEGENDRE_PHBCBN(n,x) nth Legendre polynomial Pn(x)
LEGENDRE_P_LISTHBCBN(n,x) vector of first n Legendre polynomials
LERCH_PHI1CKZXC(z,s,a,m) m terms of series approximation for Lerch transcendent function Φ(z,s,a)
LI7RN4D(x,m) m terms of series approximation for logarithmic integral li(x), x>1
LIM2144O15P(u,x,y,x0,y0) limit of u as [x,y] -> [x0,y0] along slope of @1
LIN_FRACOA7SLO(r,a,b,c,p,q,k,x,y,x0,y0) specific solution of linear fractional equation y'=r((ax+by+c)/(px+qy+k))
LIN_FRAC_ GENOA7SLO(r,a,b,c,p,q,k,x,y,c) general solution of linear fractional equation y'=r((ax+by+c)/(px+qy+k))
LIN1_DIFFERENCEOKAKSN(p,q,x, x0,y0) specific solution of recurrence equation y(x+1)=p(x)y(x)+q(x), y(x0)=y0
LIN2_CCFOKAKSN(p,q,r,x,c1,c2) general solution of difference equation y(x+2)+p·y(x+1)+q·y(x)=r(x)
LIN2_CCF_BVOKAKSN(p,q,r,x,x0,y0,x2,y2) specific solution of difference equation y(x+2)+p·y(x+1)+q·y(x)=r(x)
LINEAR_CORRELATION_COEFFICIENT(A) linear correlation coefficient of 2-column x-y matrix A
LINEAR1OA7SLO(p,q,x,y,x0,y0) explicit solution of linear monic equation y'+p(x)y=q(x)
LINEAR1_GENOA7SLO(p,q,x,y,c) general solution of linear monic equation y'+p(x)y=q(x)
LIOUVILLEOB7SLO(p,q,x,y,c1,c2) general solution of Liouville equation y"+p(x)y'+q(y)(y')^2=0
LUCAS19ICN1P(n) nth Lucas number beginning at 1
LUCAS_LEHMER19ICN1P(p) if p is an odd prime and 2^p-1 is prime, returns true; otherwise returns false
MATPRODI._DEZ(A,B,i,j) element i,j of the dot product of A and B
MERSENNE19ICN1P(n) nth Mersenne prime 2^p - 1
MERSENNE_DEGREE19ICN1P(n) exponent p of nth Mersenne prime 2^p - 1
MERSENNE_LIST19ICN1P(n) exponents p of first n Mersenne prime 2^p - 1
MINORI._DEZ(A,i,j) delete row i and column j from A
MOEBIUS_MU19ICN1P(n) Moebius mu function of n
MONOMIAL_TESTOA7SLO(p,q,x,y) integrating factor of p(x,y)+q(x,y)y'=0, if result of the form x^m·y^n
NEWTON.S02QQ(u,x,x0,n) n iterations of Newton's method applied to equation u(x)=0 with initial guess of x=x0
NEWTONS.S02QQ(u,x,x0,n) n iterations of Newton's method applied to a system of equations
NEXT_MERSENNE_DEGREE19ICN1P(n) smallest prime p>n such that Mersenne number 2^p - 1 is prime
NORMAL_LINEAUKXVG(u,v,v0,t) line normal to surface u=0 at v=v0, using parameter t
NTH_PRIME19ICN1P(n) nth prime number
OCTAHEDRAL1338PND(n) nth octahedral number
OSCULATING_CIRCLEAUKXVG(y,x,θ) circle osculating y(x), in terms of θ
OUTERI._DEZ(v,w) outer product of vectors v and w
PADE12K9KB.(y,x,x0,n,d) approx y(x) near x=x0, n=numr deg, d=denr deg, n=d or d-1
PARA_ARC_LENGTH2W1Y_YU(v,t,t1,t2) arc length of vector v(t) from t=t1 to t2
PARA_ARC_LENGTH2W1Y_YU(v,t,t1,t2,μ) integral of μ(t) along v(t) from t=t1 to t2
PARA_CENTER_OF_CURVATUREAUKXVG(v,t) center of curvature of v=[x(t),y(t)]
PARA_CURVATUREAUKXVG(v,t) curvature of v=[x(t),y(t)]
PARA_DIFAUKXVG(v,t,n) nth derivative of v=[x(t),y(t)]
PARA_OSCULATING_CIRCLEAUKXVG(v,t,t0,Φ) circle osculating v=[x(t),y(t)] at t=t0 in terms of Φ
PARA_PERPENDICULARAUKXVG(v,t,t0,x) line perpendicular to v=[x(t),y(t)] at t=t0 in terms of x
PARA_TANGENTAUKXVG(v,t,t0,x) line tangent to v=[x(t),y(t)] at t=t0 in terms of x
PARTITIONI._DEZ(v,n,d) partition of vector v into vectors of length n with an offset delta of d
PARTS1338PND(n) number of decompositions of n into integer summands
PARTS_LIST1338PND(n) n+1 element vector of PARTS(0) through PARTS(n)
PELL19ICN1P(n) nth Pell number
PENTATOPE1338PND(n) nth pentatope number
PERFECT19ICN1P(n) nth perfect number (i.e. numbers that are equal to the sum of their divisors)
PERPENDICULARAUKXVG(y,x,x0) line perpendicular to y(x) at x=x0
PICARD1NBVQQO(r,p,x,y,x0,y0) improved series approximation of ODE, given the series p(x)
PIVOTI._DEZ(A,i,j) force column j below row i to 0 by pivoting
PlotIntPlotting_Areas_and_Integrals(u,x,a,b) plots the definite integral of the function u(x) from x = a to b
POCHHAMMER0FMTUG(a,x) Pochhammer symbol function (a)x
POISSON_DENSITY0FMTUG(k,t) Poisson probability density
POISSON_DISTRIBUTION0FMTUG(k,t) cumulative probability Poisson distribution function
POLAR2WQ_YS1(r,θ) 2D coordinate vector of point at radius r and co-longitude θ
POLAR_ARC_LENGTH2W1Y_YU(r,θ,θ1,θ2) arc length of polar r(θ) from θ1 to θ2
POLAR_ARC_LENGTH2W1Y_YU(r,θ,θ1,θ2,μ) integral of μ(θ) along arc r(θ)
POLAR_AREA2W1Y_YU(r,r1,r2,θ,θ1,θ2) area of θ=θ1 to θ2 and r=r1(θ) to r2(θ)
POLAR_AREA2W1Y_YU(r,r1,r2,θ,θ1,θ2,μ) integral of μ(θ) over region
POLAR_CENTER_OF_CURVATUREAUKXVG(r,θ) center of curvature of r(θ)
POLAR_CURVATUREAUKXVG(r,θ) curvature of r(θ)
POLAR_DIFAUKXVG(r,θ,n) nth derivative of r(θ)
POLAR_OSCULATING_CIRCLEAUKXVG(r,θ,θ0,Φ) circle osculating r(θ) at θ=θ0 in terms of Φ
POLAR_PERPENDICULARAUKXVG(r,θ,θ0,x) line perpendicular to r(θ) at θ=θ0 in terms of x
POLAR_TANGENTAUKXVG(r,θ,θ0,x) line tangent to r(θ) at θ=θ0 in terms of x
POLY_COEFF144O15P(u,x,n) coefficient of x^n term in polynomial u(x)
POLY_DEGREE144O15P(u,x) degree of polynomial u(x)
POLYGON_FILLFilling_Polygons(u) fills the 2D or 3D convex polygon u
POLY_INTERPOLATE144O15P(A,x) polynomial interpolation of data matrix A
POLY_INTERPOLATE_EXPRESSION144O15P(u,x,a) polynomial in x that interpolates u given 1D vector of points a
POLYGAMMA0FMTUG(n,z,m) m+1 terms of series approximation for the nth polygamma function Ψn(z)
POLYGONAL1338PND(n,p) nth p-sided polygonal number
POLYGONAL_PYRAMID1338PND(n,p,d) nth p-sided d-dimensional polygonal pyramid number
POLYLOG1CKZXC(n,z,m) m terms of series approximation for Jonquière's polylogarithm function Li(n)(z)
PRIMEPI19ICN1P(x,d,a) number of primes p ≤ x, such that p is of the form p = k·d + a for some k ≥ 0
PRIME_POWER?19ICN1P(n) if n is a power of a prime number, returns true; otherwise returns false
PRIMITIVE_ROOT19ICN1P(n) smallest primitive root mod n, if one exists; otherwise a ?
PROVE_SUM144O15P(t,k,a,n,s) if SUM(t,k,a,n)=s, return [0,0]
RANDOM_MATRIX144O15P(m,n,s) m by n matrix with random elements from -s to s
RANDOM_NORMAL144O15P(s,m) random normal value with a standard deviation of s and a mean value of m
RANDOM_POLY144O15P(x,d,s) poly of degree d in x with random coefficients from -s to s
RANDOM_SIGN144O15P random 1 or -1
RANDOM_VECTOR144O15P(n,s) n element vector with random elements from -s to s
RATIO_TEST144O15P(t,n) if < 1, SUM(t,n,a,inf) converges; if > 1, sum diverges
RAYSPlotting_Complex_valued_Expressions(w,z,z00,zmn,m,n) 2D plots w(z) as rays over the z-plane grid from z00 to zmn
RECURRENCE1338PND(u,v,v0,m) m recurrences of u(v) starting with vector v=v0
RECURRENCE1OKAKSN(r,x,y,x0,y0,n) n steps of y(x+1)=r(x,y(x)), y(x0)=y0
RHOMBIC_DODECAHEDRAL1338PND(n) nth rhombic dodecahedral number
RK1NBVQQO(r,v,v0,h,n) fourth order Runge-Kutta solution of system of 1st order differential equations
ROTATE_X2WQ_YS1(φ) matrix A so that A . [x,y,z] rotates angle φ about x axis
ROTATE_Y2WQ_YS1(φ) matrix A so that A . [x,y,z] rotates angle φ about y axis
ROTATE_Z2WQ_YS1(φ) matrix A so that A . [x,y,z] rotates angle φ about z axis
SCALE_ELEMENTI._DEZ(v,i,s) multiply element i of v by s
SEPARABLEOA7SLO(p,q,x,y,x0,y0) specific solution of separable equation y'=p(x)q(y)
SEPARABLE_GENOA7SLO(p,q,x,y,c) general solution of separable equation y'=p(x)q(y)
SI7RN4D(z) sine integral Si(z)
SMOOTH_COLUMNY5C_1X(A,j) matrix A with column j smoothed
SMOOTH_VECTORY5C_1X(v) smoothed copy of vector v
SOLVE_MOD19ICN1P(u,x,m) vector of solutions of the linear congruence equation u(x) mod m
SPHERE2WQ_YS1(r,θ,Φ) 3D coordinate matrix of a sphere of radius r
SPHERICAL_BESSEL_Y3JDX.V4(n,z) closed-form spherical Bessel function of 2nd kind,yn(z)
SPHERICAL_BESSEL_J3JDX.V4(n,z) spherical Bessel function of 1st kind jn(z) for integer n
SPHERICAL_BESSEL_J_LIST3JDX.V4(n,z) vector of spherical Bessel functions of 1st kind j0(z) through jn(z)
SPHERICAL_BESSEL_Y3JDX.V4(n,z) spherical Bessel function of 2nd kind yn(z) for integer n
SPHERICAL_VOLUME2W1Y_YU(r,r1,r2,θ,θ1,θ2,Φ,Φ1,Φ2) volume of region specified in spherical coordinates
SPHERICAL_VOLUME2W1Y_YU(r, r1,r2,θ,θ1,θ2,Φ,Φ1,Φ2,μ) integral of μ(r,θ,Φ) over the region
SQUARE_ROOT19ICN1P(a,p) square root of integer a mod prime p, if one exists; otherwise ?
SQUARE_WAVE144O15P(x) square wave of x
SQUAREFREE19ICN1P(n) if n is not divisible by the square of a prime, returns true; otherwise returns false
STAR1338PND(n) nth star (i.e. 12-sided centered) number
STIRLING1338PND(n,k) Stirling number
STIRLING11338PND(n,k) Stirling cycle number of the 1st kind
STIRLING21338PND(n,k) Stirling subset number of the 2nd kind
STIRLING_CYCLE1338PND(n,k) Stirling cycle number of the 1st kind
STIRLING_SUBSET1338PND(n,k) Stirling subset number of the 2nd kind
STUDENT0FMTUG(t,v) student's cumulative probability distribution A(t|v)
SUBTRACT_ELEMENTSI._DEZ(v,i,j,s) subtract element j·s from element i of v
SURFACE_AREA2W1Y_YU(z,x,x1,x2,y,y1,y2) area of surface z(x,y)
SURFACE_AREA2W1Y_YU(z,x,x1,x2,y,y1,y2,μ) integral of μ(x,y) over surface z(x,y)
SWAP_ELEMENTSI._DEZ(v,i,j) interchange elements i and j of vector v
TANGENTAUKXVG(y,x,x0) line tangent to y(x) at x=x0
TANGENT_PLANEAUKXVG(u,v,v0) plane tangent to u(x,y,z)=0 at [x,y,z]=v=v0
TAYLOR_INVERSE.S02QQ(u,x,y,x0,n) nth order series expansion of inverse of y=u(x)
TAYLOR_ODE11NBVQQO(r,x,y,x0,y0,n) nth order Taylor series solution of y'=r(x,y) with y=y0 at x=x0
TAYLOR_ODE21NBVQQO(r,x,y,v,x0,y0,v0,n) nth order Taylor series solution of y''=r(x,y,y')
TAYLOR_ODES1NBVQQO(r,x,y,x0,y0,n) vector of nth order Taylor series solutions of system of differential equations
TAYLOR_SOLVE.S02QQ(u,x,y,x0,y0,n) nth order series solution y(x) of u(x,y)=0
TETRAHEDRAL1338PND(n) nth tetrahedral number
TORUS2WQ_YS1(r,θ,Φ) 3D coordinate matrix of torus of radius r
TRIANGULAR1338PND(n) nth triangular number
U_LUCAS19ICN1P(n,p,q) nth term of the Lucas sequence L(n) where L(0)=0, L(1)=1, and L(n+2)=p·L(n+1)-q·L(n)
U_MOD19ICN1P(n,p,q,m) U_LUCAS(n, p, q) mod m, but is more efficient
V_LUCAS19ICN1P(n,p,q) nth term of the Lucas sequence L(n) where L(0)=2, L(1)=p, and L(n+2)=p·L(n+1)-q·L(n)
V_MOD19ICN1P(n,p,q,m) V_LUCAS(n,p,q) mod m, but is more efficient
VOLUME2W1Y_YU(x,x1,x2,y,y1,y2,z,z1,z2) volume y=y1(x) to y2(x), z=z1(x,y) to z2(x,y)
VOLUME2W1Y_YU(x,x1,x2,y,y1,y2,z,z1,z2,μ) integral of μ(x,y,z) over region
VOLUME_CENTROID2W1Y_YU(x,x1,x2,y,y1,y2,z,z1,z2) volumetric centroid of region
VOLUME_CENTROID2W1Y_YU(x,x1,x2,y,y1,y2,z,z1,z2,μ) centroid of density μ(x,y,z)
VOLUME_INERTIA2W1Y_YU(x,x1,x2,y,y1,y2,z,z1,z2) volumetric inertia tensor
VOLUME_INERTIA2W1Y_YU(x,x1,x2,y,y1,y2,z,z1,z2,μ) inertia tensor of μ(x,y,z)
VOLUME_OF_REVOLUTION2W1Y_YU(y,x,x1,x2) volume of y(x) revolved about x-axis
VOLUMEY_OF_REVOLUTION2W1Y_YU(y,x,x1,x2) volume of y(x) revolved about y-axis
WEBER_DHBCBN(n,x) Weber's nth parabolic cylinder function Dn(x)
Other Help Contentsidh_Contents
Created with the Personal Edition of HelpNDoc: Easily create HTML Help documents